The word "pharmacognosy" is derived from the Greek words pharmakon (drug), and gnosis or "knowledge". The term pharmacognosy was used for the first time by the Austrian physician Schmidt in 1811. Originally - during the 19th century and the beginning of the 20th century - "pharmacognosy" was used to define the branch of medicine or commodity sciences ("Warenkunde" in German) which deals with drugs in their crude, or unprepared, form. Crude drugs are the dried, unprepared material of plant, animal or mineral origin, used for medicine. The study of these materials under the name pharmakognosie was first developed in German-speaking areas of Europe, while other language areas often used the older term materia medica taken from the works of Galen and Dioscorides. In German the term drogenkunde ("science of crude drugs") is also used synonymously.
Although most pharmacognostic studies focus on plants and medicines derived from plants, other types of organisms are also regarded as pharmacognostically interesting, in particular, various types of microbes (bacteria, fungi, etc.), and, recently, various marine organisms.
Pharmacognosy is interdisciplinary, drawing on a broad spectrum of biological and socio-scientific subjects, including botany, ethnobotany, medical anthropology, marine biology, microbiology, herbal medicine, chemistry,biotechnology, (phytochemistry), pharmacology, pharmaceutics, clinical pharmacy and pharmacy practice. The contemporary study of pharmacognosy can be divided into the fields of
* medical ethnobotany: the study of the traditional use of plants for medicinal purposes;
* ethnopharmacology: the study of the pharmacological qualities of traditional medicinal substances;
* the study of phytotherapy (the medicinal use of plant extracts); and
* phytochemistry, the study of chemicals derived from plants (including the identification of new drug candidates derived from plant sources).
* Zoopharmacognosy, the process by which animals self-medicate, by selecting and using plants, soils, and insects to treat and prevent disease.
* Pharmcognosy-Biotechnology, the synthesis of natural bioactive molecules using biotechnology.
* Herbal interactions, the interactions of herbs with other drugs and body.
* Marine Pharmacognosy, the study of chemicals derived from marine organisms.
Origin
The word Pharmacognosy had its debut in the early 19th century to designate the discipline related to medicinal plants, it is derived from the Greek word pharmakon meaning “a drug” and gnosco meaning “ to acquire a knowledge” and as recorded by Dr. K Ganzinger.
Pharmacognosy appears again in 1815 in a small work by Crr. Anotheus ssedler entitled Analecta Pharmacognostica.
Pharmacognosy is closely related to botany and plant chemistry and indeed, both originated from the earlier scientific studies of medicinal plants.
As the late as the beginning of the 20th century, the subject had developed mainly in the botanical side, being concerned with the description and identification of drugs. Both in the whole state and in porodler, and with their history. Commerce, collection, preparation, and storage. Such branches of pharmacognosy are still of fundamental importance, particularly for pharmacopoeial identification and quality control purposes, but rapid development in other areas has enormously expanded the subject.
At the 9th congress of Italian society of pharmacognosy it was stated that current return of phyto-therapy was clearly reflected by the increased market of such products. In 1998 the later for Europe, reached a figure of $6 billion, with consumption for Germany of $2.5 billion, France $1.6 billion and Italy $600 billion. In the US, where the use of herbal products has never been as prevalent as in continental Europe, the market for all herb sales reached a peak in 1998 of $700 billion. This welcomed the scientific investigation of a rigorous nature.
The plant kingdom still holds many species of plants containing substances of medicinal value which have yet to be discovered. Large numbers of plants are constantly being screened for their possible pharmacological value.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.